934 resultados para Anti-bacterial activity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given the spread of antibiotic resistance in bacterial pathogens, antimicrobial peptides that can also modulate the immune response may be a novel approach for effectively controlling periodontal infections. In the present study, we used a three-dimensional (3D) co-culture model of gingival epithelial cells and fibroblasts stimulated with Aggregatibacter actinomycetemcomitans lipopolysaccharide (LPS) to investigate the anti-inflammatory properties of human beta-defensin-3 (hBD-3) and cathelicidin (LL-37) and to determine whether these antimicrobial peptides can act in synergy. The 3D co-culture model composed of gingival fibroblasts embedded in a collagen matrix overlaid with gingival epithelial cells had a synergistic effect with respect to the secretion of IL-6 and IL-8 in response to LPS stimulation compared to fibroblasts and epithelial cells alone. The 3D co-culture model was stimulated with non-cytotoxic concentrations of hBD-3 (10 and 20 mu M) and LL-37 (0.1 and 0.2 mu M) individually and in combination in the presence of A. actinomycetemcomitans LPS. A multiplex ELISA assay was used to quantify the secretion of 41 different cytokines. hBD-3 and LL-37 acted in synergy to reduce the secretion of GRO-alpha, G-CSF, IP-10, IL-6, and MCP-1, but only had an additive effect on reducing the secretion of IL-8 in response to A. actinomycetemcomitans LPS stimulation. The present study showed that hBD-3 acted in synergy with LL-37 to reduce the secretion of cytokines by an LPS-stimulated 3D model of gingival mucosa. This combination of antimicrobial peptides thus shows promising potential as an adjunctive therapy for treating inflammatory periodontitis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To evaluate the antibacterial, enzyme-inhibitory and hemolytic activities of Salkylated/ aralkylated 2-(1H-indol-3-ylmethyl)-1,3,4-oxadiazole-5-thiol derivatives. Methods: Antibacterial activities of the compounds were evaluated using broth dilution method in 96 well plates. Enzyme inhibitory activities assays were investigated against α-glucosidase, butyrylcholinesterase (BchE) and lipoxygenase (LOX) using acarbose, eserine and baicalien as reference standards, respectively. A mixture of enzyme, test compound and the substrate was incubated and variation in absorbance noted before and after incubation. In tests for hemolytic activities, the compounds were incubated with red blood cells and variations in absorbance were used as indices their hemolytic activities. Results: The compounds were potent antibacterial agents. Five of them exhibited very good antibacterial potential similar to ciprofloxacin, and had minimum inhibitory concentrations (MIC) of at least 9.00 ± 4.12 μM against S. aureus, E.coli, and B. subtilis. One of the compounds had strong enzyme inhibitory potential against α-glucosidase, with IC50 of 17.11 ± 0.02 μg/mL which was better than that of standard acarbose (IC50 38.25 ± 0.12 μg/mL). Another compound had 1.5 % hemolytic activity. Conclusion: S-Alkylated/aralkylated 2-(1H-indol-3-ylmethyl)-1,3,4-oxadiazole-5-thiol deviratives with valuable antibacterial, anti-enzymatic and hemolytic activities have been successfully synthesized. These compounds may be useful in the development of pharmaceutical products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Zoledronic acid is used to prevent the bone loss associated with antioestrogen treatments in subjects with breast cancer. Preclinical studies suggest that zoledronic acid may have anticancer activity in its own right. This anticancer possibility with zoledronic acid has not been investigated extensively in clinical trials. Objectives/methods: This evaluation is of a large clinical trial that investigated the effect of zoledronic acid on cancer outcomes in premenopausal women with breast cancer. Results: The trial showed that after 4 years, 94.0% of subjects who were treated with zoledronic acid were disease-free compared with 90.8% of those not treated with zoledronic acid. Recurrence survival was a secondary end point; this occurred in 94.0% with, and 90.9% without, zoledronic acid treatment. Conclusions: Zoledronic acid does have anticancer activity in premenopausal women with cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infusions and decoctions of Cymbopogon ambiguus have been used traditionally in Australia for the treatment of headache, chest infections and muscle cramps. The aim of the present study was to screen and identify bioactive compounds from C. ambiguus that could explain this plant's anti-headache activity. A dichloromethane extract of C. ambiguus was identified as having activity in adenosine-diphosphate-induced human platelet aggregation and serotonin-release inhibition bioassays. Subsequent fractionation of this extract led to the isolation of four phenylpropenoids, eugenol, elemicin, Eugenol methylether and trans-isoelemicin. While both Eugenol and elemicin exhibited dose-dependent inhibition of ADP-induced human platelet serotonin release, only eugenol displayed potent inhibitory activity with an IC(50) value of 46.6 microM, in comparison to aspirin, with an IC(50) value of 46.1 microM. These findings provide evidence to support the therapeutic efficacy of C. ambiguus in the non-conventional treatment of Headache and Inflammatory conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Propolis of Australian stingless bees (Tetragonula carbonaria, Meliponini) originating from Corymbia torelliana (Myrtaceae) fruit resins was tested for its antimicrobial activities as well as its flavonoid contents. This study aimed at the isolation, structural elucidation and antibacterial testing of flavanones of C. torelliana fruit resins that are incorporated into stingless bee propolis. Flavanones of this study were elucidated by spectroscopic and spectrometric methods including UV, 1D and 2D NMR, EI-MS, ESI-MS and HR-MS. The results indicated known C-methylated flavanones namely, 1 (2S)-cryptostrobin, its regioisomer 2 (2S)- stroboponin, 3 (2S)- cryptostrobin 7-methyl ether, and 6 (2S)- desmethoxymatteucinol, and known flavanones 4 (2S)- pinostrobin and 5 (2S)- pinocembrin as markers for C. torelliana fruit resins and one propolis type. Ethanolic preparations of propolis were shown to be active against Staphylococcus aureus (ATCC 25923) and to a lesser extent against Pseudomonas aeruginosa (ATCC 27853). C. torelliana flavanones inhibited the growth of S. aureus therefore contributing to the antibacterial effects observed for Australian stingless bee propolis extracts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intravenous immunoglobulin (IVIg) is widely used to treat autoimmune diseases. Several mutually nonexclusive mechanisms are proposed to explain the beneficial effects of IVIg in patients (1, 2). Lately, Ravetch and colleagues (3) demonstrate that anti-inflammatory activity of IVIg is mediated mainly by antibodies that contain terminal _2,6-sialic acid linkages at the Asn297-linked glycan of Fc region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Honey is valued for its medicinal properties. There interest from industry to develop a rapid method to detect the bioactivity of honey and also to develop value added products from high antibacterial honey.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strategies that confine antibacterial and/or antifouling property to the surface of the implant, by modifying the surface chemistry and morphology or by encapsulating the material in an antibiotic-loaded coating, are most promising as they do not alter bulk integrity of the material. Among them, plasma-assisted modification and catechol chemistry stand out for their ability to modify a wide range of substrates. By controlling processing parameters, plasma environment can be used for surface nano structuring, chemical activation, and deposition of biologically active and passive coatings. Catechol chemistry can be used for material-independent, highly-controlled surface immobilisation of active molecules and fabrication of biodegradable drug-loaded hydrogel coatings. In this article, we comprehensively review the role plasma-assisted processing and catechol chemistry can play in combating bacterial colonisation on medically relevant coatings, and how these strategies can be coupled with the use of natural antimicrobial agents to produce synthetic antibiotic-free antibacterial surfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To study the efficacy of ethanolic extract of B. monosperma bark in cafeteria and atherogenic diet fed rats and monosodium glutamate (MSG) obese rats, different doses (200, 400 and 800 mg/kg) of ethanolic extract of B. monosperma bark showed dose dependent decrease in body weight, daily food intake, glucose, lipids, internal organs' weight and fat pad weight in cafeteria and atherogenic diet fed rats and monosodium glutamate obese rats. The results suggested that B. monosperma has significant anti-obese activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of macrobicyclic dizinc(II) complexes Zn2L1-2B](ClO4)(4) (1-6) have been synthesized and characterized (L1-2 are polyaza macrobicyclic binucleating ligands, and B is the N,N-donor heterocyclic base (viz. 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen)). The DNA and protein binding, DNA hydrolysis and anticancer activity of these complexes were investigated. The interactions of complexes 1-6 with calf thymus DNA were studied by spectroscopic techniques, including absorption, fluorescence and CD spectroscopy. The DNA binding constant values of the complexes were found to range from 2.80 x 10(5) to 5.25 x 10(5) M-1, and the binding affinities are in the following order: 3 > 6 > 2 > 5 > 1 > 4. All the dizinc(II) complexes 1-6 are found to effectively promote the hydrolytic cleavage of plasmid pBR322 DNA under anaerobic and aerobic conditions. Kinetic data for DNA hydrolysis promoted by 3 and 6 under physiological conditions give observed rate constants (k(obs)) of 5.56 +/- 0.1 and 5.12 +/- 0.2 h(-1), respectively, showing a 10(7)-fold rate acceleration over the uncatalyzed reaction of dsDNA. Remarkably, the macrobicyclic dizinc(II) complexes 1-6 bind and cleave bovine serum albumin (BSA), and effectively promote the caspase-3 and caspase-9 dependent deaths of HeLa and BeWo cancer cells. The cytotoxicity of the complexes was further confirmed by lactate dehydrogenase enzyme levels in cancer cell lysate and content media.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present investigation, a Schiff base N'(1),N'(3)-bis(E)-(5-bromo-2-hydroxyphenyl)methylidene]benzene-1,3-d icarbohydrazide and its metal complexes have been synthesized and characterized. The DNA-binding studies were performed using absorption spectroscopy, emission spectra, viscosity measurements and thermal denatuaration studies. The experimental evidence indicated that, the Co(II), Ni(II) and Cu(II) complexes interact with calf thymus DNA through intercalation with an intrinsic binding constant K-b of 2.6 x 10(4) M-1, 5.7 x 10(4) M-1 and 4.5 x 10(4) M-1, respectively and they exhibited potent photo-damage abilities on pUC19 DNA, through singlet oxygen generation with quantum yields of 0.32, 0.27 and 0.30 respectively. The cytotoxic activity of the complexes resulted that they act as a potent photosensitizers for photochemical reactions. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present investigation, a Schiff base N'(1),N'(3)-bis(Z)-(2-hydroxynapthyl)methylidene]benzene-1,3-dicarbod ihydrazide (L-1) and its Co(II), Ni(II) and Cu(II) complexes have been synthesized and characterized as novel photosensitizing agents for photodynamic therapy (PDT). The interaction of these complexes with calf thymus DNA (CT DNA) has been explored using absorption, thermal denaturation and viscometric studies. The experimental results revealed that Co(II) and Ni(II) complexes on binding to CT DNA imply a covalent mode, most possibly involving guanine N7 nitrogen of DNA, with an intrinsic binding constant K-b of 4.5 x 10(4) M-1 and 4.2 x 10(4) M-1, respectively. However, interestingly, the Cu(II) complex is involved in the surface binding to minor groove via phosphate backbone of DNA double helix with an intrinsic binding constant K-b of 5.7 x 10(4) M-1. The Co(II), Ni(II) and Cu(II) complexes are active in cleaving supercoiled (SC) pUC19 DNA on photoexposure to UV-visible light of 365 nm, through O-1(2) generation with quantum yields of 0.28, 0.25 and 0.30, respectively. Further, these complexes are cytotoxic in A549 lung cancer cells, showing an enhancement of cytotoxicity upon light irradiation. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Dictamnus dasycarpus is widely used as a traditional remedy for the treatment of eczema, rheumatism, and other inflammatory diseases in Asia. The current study investigates the molecular mechanism of anti-inflammatory action of the ethanol extract of Dictamnus dasycarpus leaf (DE) in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Methods: Nitric oxide (NO) production was assessed by Griess reaction and the mRNA and protein expressions of pro inflammatory cytokines, transcription factor, and enzymes were determined by real-time RT-PCR and immunoblotting analysis. Results: DE (0.5 and 1 mg/mL) suppressed the NO production by 10 and 33%, respectively, compared to the untreated group in LPS-stimulated RAW 264.7 cells. DE (0.5 and 1 mg/mL) reduced the mRNA expression of key transcription factor nuclear factor-kappa B by 7 and 24%, respectively compared to the untreated group in LPS activated macrophage. The pro inflammatory cytokines such as tumor necrosis factor a and interleukin 1 beta were also decreased by DE treatment. Moreover, the protein expression of pro inflammatory enzymes, inducible nitric oxide synthase and cyclooxygenase 2 were also dramatically attenuated by DE in a dose dependent manner. Conclusions: These results suggest that Dictamnus dasycarpus leaf has a potent anti-inflammatory activity and can be used for the development of new anti-inflammatory agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new type of copper(II) complex, CuL(phen)(2)](NO3) (CuIP), where L ((E)-N'-(2-oxoindolin-3-ylidene) benzohydrazide) is a N donor ligand and phen is the N, N-donor heterocyclic 1,10-phenanthroline, has been synthesized. The phenyl carbohydrazone conjugated isatin-based ligand L and CuIP were characterized by elemental analysis, infrared, UV-Vis, H-1 and C-13 NMR and ESI-mass spectral data, as well as single-crystal X-ray diffraction. The interaction of calf thymus DNA (CT DNA) with L and CuIP has been investigated by absorption, fluorescence and viscosity titration methods. The complex CuIP displays better binding affinity than the ligand L. The observed DNA binding constant (K-b = 4.15(+/- 0.18) x 10(5) M-1) and binding site size (s = 0.19), viscosity data together with molecular docking studies of CuIP suggest groove binding and/or a partial intercalative mode of binding to CT DNA. In addition, CuIP shows good binding propensity to the bovine serum albumin (BSA) protein, giving a K-BSA value of 1.25(+/- 0.24) x 10(6) M-1. In addition, the docking studies on DNA and human serum albumin (HSA) CuIP interactions are consistent with the consequence of binding experiments. The in vitro anti-proliferative study establishes the anticancer potency of the CuIP against the human cervical (HeLa) and breast (MCF7) cancer cells; noncancer breast epithelial (MCF10a) cells have also been investigated. CuIP shows better cytotoxicity and sensitivity towards cancer cells over noncancer ones than L under identical conditions, with the appearance of apoptotic bodies. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unlike conventional polymeric drug delivery systems, where drugs are entrapped in polymers, this study focuses on the incorporation of the drug into the polymer backbone to achieve higher loading and sustained release. Crosslinked, biodegradable, xylitol based polyesters have been synthesized in this study. The bioactive drug moiety, p-aminosalicylic acid (PAS), was incorporated in xylitol based polyesters to impart its anti-mycobacterial activity. To understand the influence of the monomer chemistry on the incorporation of PAS and its subsequent release from the polymer, different diacids have been used. Controlled release profiles of the drug from these polyesters were studied under normal physiological conditions. The degradation of the polyesters varied from 48% to 76% and the release of PAS ranged from 54% to 65% of its initial loading in 7 days. A new model was developed to explain the release kinetics of PAS from the polymer that accounted for the polymer degradation and drug concentration. The thermal, mechanical, drug release and cytocompatibility properties of the polymers indicate their suitability in biomedical applications. The released products from these polymers were observed to be pharmacologically active against Mycobacteria. The high drug loading and sustained release also ensured enhanced efficacy. These polymers form biocompatible, biodegradable polyesters where the sustained release of PAS may be tailored for potential treatment of mycobacterial infections. Statement of significance In the present work, we report on novel polyesters with p-aminosalicylic acid (PAS) incorporated in the polymer backbone. The current work aims to achieve controlled release of PAS and ensures the delivered PAS is stable and pharmacologically active. The novelty of this work primarily involves the synthetic chemistry of polymerization and detailed analysis and efficacy of active PAS delivery. A new kinetic model has been developed to explain the PAS release profiles. These polymers are biodegradable, cytocompatible and anti-mycobacterial in nature. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.